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Why formally compare representations?
(non-exhaustive)

1. Compare some input representation to some target/output representation of some process to 

learn about the computational nature of that process (e.g. Jardine 2017)

2. Compare some potential lexical representation with a target surface representation to 

determine “what type of information needs to be directly stored in long-term memory” (Nelson 

2024)

3. Compare proposal A from the literature to proposal B from the literature to determine 

differences in predictions/complexity/content/?? (e.g. Strother-Garcia 2019, Oakden 2020, 

Jardine, Danis & Iacoponi 2021)

2/58



Meta-theoretical comparisons

General enterprise

• Define phonological structures in finite model theory 

(Libkin 2004)

• Provide logical transductions, or translations, from one 

theory to another (Courcelle 1994)

For phonologists

1. What can computational phonologists learn about or 

conclude from transductions defined over 

representations across theoretical proposals?

2. What can practitioners of such proposals conclude from 

the same transductions?

3. Under what circumstances can two representations 

be considered notationally equivalent?

from Strother-Garcia 2019: 19
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An analogy

from https://www.nps.gov/subjects/bats/how-bats-fly.htm
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Framework and preliminaries



Definitions
• I use proposal to mean some phonological theory or model as defined and proposed in the 

primary literature, and theory to mean its specific model-theoretic implementation (Libkin 

2004, Strother-Garcia 2019)

• A segmental theory or proposal is one that focuses only on the structure of segments1, as 

opposed to syllabic, metrical, or other types of possible phonological representations

‣ linear representational theory here means those theories where there is only a single total 

linear ordering relation (or function) defined between segments in a theory (e.g. strings or 

feature matrices)

‣ nonlinear representational theory then are those with more than a single ordering 

relation (or function) defined (e.g. autosegmental representations), or one using general 

precedence

1or segment-like things, as not every proposal intends to actually define what a segment is
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(Some) Segmental Proposals

Chomsky & Halle 1968: 336 Clements 1985: 229

Sagey 1986: 2 van de Weijer 1996: 77
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Segmental Theories
In addition to their model-theoretic implementation, as a tool to aid in comparing segmental 

theories, we assume an atomic segment mapping for each:

Definition 1: Atomic segment mapping.

For each segmental proposal represented as a finite model, we 

also define a bijective mapping from the full range of possible 

segmental structures in that theory to atomic symbols (e.g. 

IPA characters that capture the intended linguistic meaning of 

said structures).

↑
↑

↑

𝑓
○ p

△ t

□ k

⋮

Note that there is some analytical freedom in how structures are mapped to IPA characters; this 

has consequences later.
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Logical Transductions
• Illustrative transduction example from Nelson 2024: 106: a translation between strings (over t, d, 

n, a) and feature bundles (with [voi], [son], [syl])

• output structure defined in terms of input structure

Rule (4.13) can be read: some 

position x is labeled [voi] in the 

output if it is labeled d, or n, or a 

in the input

• output structure is then an order of positions, each with multiple labels (unary relations) 

representing phonological features
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Logical Transductions
• When the input is a featural representation, there is the following translation back into a string:

• The two theories are therefore bi-interpretable (formal definition forthcoming)

• Additionally, and crucially, not just structures but any rule/constraint/logical sentence given in 

terms of one theory is also translatable into the logic of the other theory; they are equally 

expressive
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Interpretation Domains
• Miller 2001 provides a framework for comparing different syntactic formalisms also using model 

theory to explicitly define a strong generative capacity for syntax

• The framework of interpretation domains and interpretation functions allows for formal meta-

theoretical comparisons

‣ “That is, we must be able to specify which are the intended interpretations of a 

structural description in a given formalism. For this purpose we introduce the notion of 

Interpretation Domain. Interpretation Domains are set up to provide explicit characterizations 

of linguistically significant properties of sentences, independently of specific 

formalisms.” (Miller 2001: 9, emph. mine)

• Example: one Interpretation Domain is predicted constituent structure of a natural language 

sentence. Formalism A is a phrase structure tree, formalism B is a dependency parse. An 

Interpretation Function is defined that takes this formalism and outputs a set-theoretic 

representation of the constituency structure of each; these can now be compared directly.
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Three Interpretation Domains for Phonology

Contrast Preservation

Do the theories predict the same 

set of phonological contrasts?

Natural Class Preservation

Do the theories predict the same 

sets of natural classes?

Feature Class Preservation

Do the theories predict the same 

groups of features behave 

similarly?

• Each interpretation domain codifies some intended linguistic property of some potential theory

• Some interpretation domains might not be relevant for a specific comparison—this is expected 

and exactly why they must be defined and enumerated

• Each domain relates to logical transductions in different ways; some as a consequence, others as 

seemingly orthogonal

• (Non-)equivalence across these domains must be considered when claiming notational 

equivalence across theories
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What do transductions tell us?



Contrast Preservation
• Discussed in detail in Oakden 2020: contrast preservation is when “no contrasts present in one 

model are lost in the process of translation into the other.” (Oakden 2020: 263)

• The definition of bi-interpretable used in Oakden is stronger than that used in previous work 

(e.g. Strother-Garcia 2019), so a transduction that meets this criteria will be called here strongly 

bi-interpretable.

Definition 2: Strongly bi-interpretable.

Given two theories 𝑇1 and 𝑇2, an interpretation 𝐹  from 𝑇1 to 𝑇2, and 𝐺 from 𝑇2 to 𝑇1, the 

theories 𝑇1 and 𝑇2 are strongly bi-interpretable iff the mapping of 𝐹 ∘ 𝐺 “produces the same 

mapping as (i.e. is isomorphic to) the identity map that maps every bundled structure to itself”, 

and likewise for 𝐺 ∘ 𝐹  (Oakden 2020: 281).
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Oakden 2020
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Contrast Preservation
While Oakden 2020 uses contrast preserving to mean exactly those translations that are strongly 

bi-interpretable, the definition of contrast preservation offered here is one that is not dependent 

on the existence of a defined transduction.

Definition 3: Contrast Preservation (transduction neutral).

If 𝑓  is the atomic segment mapping for some theory 𝑇1 and 

𝑔 is the atomic segment mapping for some theory 𝑇2, then 

𝑇1 and 𝑇2 are contrast preserving iff 𝑓 ∘ 𝑔−1 is a bijection 

(where 𝑔−1 is the inverse mapping, i.e. from atomic symbols 

to structures)

↑ ↑

↑ ↑

↑ ↑

𝑓 𝑔−1

○ p ⚀
△ t ⚁
□ k ⚂

⋮
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Contrast Preservation

Theorem 1: Contrast preservation follows from strong bi-interpretability.

If two segmental theories 𝑇1 and 𝑇2 are strongly bi-interpretable, then there exist atomic 

segment mappings for 𝑇1 and 𝑇2 that are contrast preserving.

Proof: If 𝐹  is a translation from 𝑇1 → 𝑇2, and 𝐺 vice versa, then by definition if 𝑇1 and 𝑇2 are 

strongly bi-interpretable, 𝐹 ∘ 𝐺 and 𝐺 ∘ 𝐹  are isomorphic to the identity map. The identity map is 

a bijection, so 𝐹 ∘ 𝐺 and 𝐺 ∘ 𝐹  are bijective. If 𝐹 ∘ 𝐺 is bijective, then 𝐹  and 𝐺 are each bijective. 

Map every structure 𝑀  in 𝑇1 to some arbitrary unique symbol; this is its atomic segment mapping 

𝑓 . Associate that same symbol to 𝐹(𝑀); this is the atomic segment mapping 𝑔 for 𝑇2. 𝑓 ∘ 𝑔−1 

must then itself be bijective and therefore 𝑇1 and 𝑇2 are contrast preserving, by definition.
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Contrast Preservation
Splitting the definition of contrast preservation from that of (strong) bi-interpretability allows us 

to ask:

Can there be a situation where 𝑇1 and 𝑇2 are contrast preserving (as defined here), but are not 

strongly bi-interpretable under MSO?

• In a purely mathematical sense, probably?: two theories with the equal cardinality of structures 

are contrast preserving in a trivial sense

• In the extension of those representations ever proposed for phonology, probably not?

‣ Nelson 2022 provides translations for strings and representations in articulatory phonology, 

which are fairly far apart on the representational spectrum
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Contrast non-preservation and pattern complexity
Inspired by conference website, consider the contour segment (𝑇1) vs. cluster (𝑇2) analyses of 

affricates such that some true affricate ts is in the atomic segment mapping codomain of 𝑇1 but 

not 𝑇2

↑↑

↑↑

↑↑ ↑

𝑇1 𝑇2

t a

s a

t s a

ts a

t a

s a

t s a

𝑇1 has a contrast between clusters and true 

affricates, while 𝑇2 does not, thus the two are 

not contrast preserving and further are not 

strongly bi-interpretable.

Spaces added between atomic elements for clarity.

19/58



functions

↑
↑

↑↑

𝑇1 𝑇2

t a

s a

t s a

ts a

t a

s a

t s a

surjection (but not injection): every element in 

the codomain (𝑇2) is mapped to from some 

element in the domain (𝑇1)

↑
↑

↑

𝑇1 𝑇2

t a

s a

t s a

ts a

t a

s a

t s a

injection (but not surjection): no two elements 

in the domain (𝑇2) map to the same element in 

the codomain (𝑇1)

a bijection is both an injection and a surjection
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Contrast non-preservation and pattern complexity

Theorem 2: Strongly bi-interpretable linear theories preserve complexity classes(?).

If a pattern is of certain complexity class 𝐶𝑘 when modeled under some linear representational 

theory 𝑇1, and 𝑇1 is strongly bi-interpretable with 𝑇2, then the pattern modeled under 𝑇2 is of 

the complexity class 𝐶𝑗, where potentially 𝑗 = 𝑘2

• Sketch of proof: this is essentially defining an isomorphism for formal languages of strings 

between two alphabets Σ and Σ′; such an operation there preserves the complexity class. 

Assuming only linear represtational theories means there is never a situation where a non-local 

process becomes local (or vice versa).

• Non-linear representations can definitely lower the complexity of a pattern: Jardine 2016: 

certain tonal patterns are non-local when computed over string representations, but local when 

computed over autosegmental representations.

2The 𝑘 of the necessary constraint might change based on the exact configuration of the structure, but with finite 
models in a linear theory the 𝑘 remains bounded.
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What transductions don’t tell us



Natural Class Preservation
In view of this, if a theory of language failed to provide a mechanism for 

making distinctions between more or less natural classes of segments, this 

failure would be sufficient reason for rejecting the theory as being incapable 

of attaining the level of explanatory adequacy. (Chomsky & Halle 1968: 335)

In Logical Phonology […], rules refer to natural classes by definition: a 

statement that cannot be formulated in terms of natural classes is not a rule. 

(Volenec & Reiss 2020: 28)

• Two theories are natural class preserving if they predict the same sets of natural classes 

across their possible structures.

• In the respective grammatical systems for most proposed representations, the possible natural 

classes directly influence the rules or constraints over that structure.
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Natural Class Preservation
• Given some theory 𝑇 , a natural class in that theory are all the segmental structures sharing 

some piece of connected substructure.

• For example, in a theory where a node can have the label [+labial], then the natural class for 

[+labial] is the set of all segmental structures containing a node labeled [+labial] and none that 

do not.

• Because this is a set of structures, it cannot be compared directly against some other theory that 

builds structure differently:

rt

+lab +voi

 

rt

+lab -voi

[+lab
+voi] [+lab

−voi]
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Natural Class Extensions
If 𝑁  is a natural class of structures in 𝑇  as defined above, and 𝑓  is the atomic segment mapping 

for 𝑇 , then the natural class extension of 𝑁  is the set 𝐸 = {𝑓(𝑥) : 𝑥 ∈ 𝑁}

𝑇1

rt

+lab +voi

 

rt

+lab -voi

b p

𝑇2 [+lab
+voi] [+lab

−voi] b p

𝑁+lab 𝐸+lab
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Natural Class Extensions

Definition 4: Natural Class Preservation.

Two theories 𝑇1 and 𝑇2 are natural class preserving iff the set of all natural class extensions of 

𝑇1 exactly equals the set of all natural class extensions of 𝑇2
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Two theories: unified and v-features
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Figure 1: unified theory uses same unary labels 

for features distinguishing consonants and 

vowels, but includes V-place node
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Figure 2: v-features theory uses unique labels 

for features distinguishing vowels, no separate 

V-place node
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Two theories: unified and v-features
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Two theories: unified and v-features
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Two theories: unified and v-features
• unified and v-features are contrast preserving

‣ each with 6 fully-specified binary features

• unified and v-features are strongly QF-bi-interpretable

‣ full transduction rules in appendix

• yet unified and v-features are not natural class preserving

‣ unified contains a natural class for each value of each place feature whose natural class 

extensions are not part of the natural class extensions of v-features (this is intentional and 

expected, see Danis 2025 for further discussion)

• do we want to call them notationally equivalent?
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Feature Class Preservation
The enterprise of feature geometry involves a cross-linguistic investigation of which features 

seem to behave/change together in some process, and working this into the representations 

themselves, e.g. if all all place features tend to assimilate together, then there must be some 

constituent in the segmental structure that includes all place features. (Clements 1985, Sagey 1986, 

Mester 1986, McCarthy 1988, among many others)

• If two theories group the same (or related) features into the same constituency structure, they 

are feature class preserving.

• Problem: constituents of features cannot be compared directly if their labels (names) do not 

match (e.g. [labial] vs [round]).

• Solution: Utilize the logical transduction to compare constituency in terms of relevant node 

indices such that constituents in both theories can be compared directly in a set theoretic way.
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Feature Class Preservation
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Figure 5: unified
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Figure 6: v-features

the sets of terminal nodes cannot be compared directly as their labels differ
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Feature Class Preservation
The property of feature class preservation is defined as an MSO sentence over one theory while 

defining relations for the other theory based on the rules of the transduction.

1. define a relation 𝐷 that captures the domination relation for the model in theory A in the logic 

of theory A

𝑥𝐷𝑦 = 𝜑(𝑥, 𝑦)

2. use the transduction to define 𝐷′ in the logic of B but still evaluated over model A

𝑥𝐷′𝑦 = 𝜑′(𝑥, 𝑦)

3. define two MSO sentences defining constituency, one using 𝑅 and one using 𝑅′, and compare 

the resulting sets
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Feature Class Preservation

Defining Constituency

• define 𝑅 and 𝑅′ as the transitive closure of 𝐷 and 𝐷′ (which is in general MSO definable) to get 

the general dominance relation

• assume the following helper predicate:

terminal(𝑥) = ¬∃𝑦[𝑥𝐷𝑦]

• the definition of constituent in theory A:

ConstitA(𝑋) = ∃𝑦∀𝑥[𝑋(𝑥) ↔ 𝑦𝑅𝑥 ∧ terminal(𝑥)]

a constituent is the set of positions X for some node y such that position x is contained in X iff y 

generally dominates x and x is a terminal node
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Constituents in unified

𝑥𝐷𝑦 ≔ parent(𝑦) = 𝑥 ∧ 𝑥 ≠ 𝑦
Constitunified(𝑋) ≔ ∃𝑦∀𝑥[𝑋(𝑥) ↔ 𝑦𝑅𝑥 ∧ terminal(𝑥)]

for unified,

𝑅 = {(0, 1), (0, 2), (0, 3), (0, 4),
(0, 5), (0, 6), (0, 7), (0, 8)
(5, 6), (5, 7), (5, 8),
(1, 2), (1, 3), (1, 4)}

so the following sets satisfy Constitunified(𝑋):
{2, 3, 4, 6, 7, 8}, {2, 3, 4}, {6, 7, 8}
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Constituents in v-features

Define 𝐷′
Current definition for 𝐷: 𝑥𝐷𝑦 ≔ parent(𝑦) = 𝑥 ∧ 𝑥 ≠ 𝑦

Relevant transduction rules:

parent(𝑥1) ≔ {(parent(𝑥))1 ⇔ ¬ vowelFeature(parent(𝑥))
(parent(parent(𝑥)))1 ⇔ vowelFeature(parent(𝑥))

vowelFeature = +round(𝑥) ∨ +front(𝑥) ∨ +back(𝑥) ∨ −round(𝑥) ∨ −front(𝑥) ∨ −back(𝑥)

The function is defined with cases; these become conjuncts:

𝑥𝐷′𝑦 ≔ (parent(𝑦))1 = 𝑥 ↔ ¬ vowelFeature(parent(𝑦)) ∧
(parent(parent(𝑦)) = 𝑥 ↔ vowelFeature(parent(𝑦)) ∧
𝑥 ≠ 𝑦
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Feature Class Preservation

𝑥𝐷′𝑦 ≔ (parent(𝑦))1 = 𝑥 ↔ ¬ vowelFeature(parent(𝑦)) ∧
(parent(parent(𝑦)) = 𝑥 ↔ vowelFeature(parent(𝑦)) ∧
𝑥 ≠ 𝑦

for v-features but defined over unified,

𝑅′ = {(0, 1), (0, 2), (0, 3), (0, 4),
(0, 6), (0, 7), (0, 8),
(1, 2), (1, 3), (1, 4)}

so the following sets satisfy Constitv-feat(𝑋):
{2, 3, 4, 6, 7, 8}, {2, 3, 4}
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Feature Class Preservation

constituents of unified = {{2, 3, 4, 6, 7, 8}, {2, 3, 4}, {6, 7, 8}}
constituents of v-features = {{2, 3, 4, 6, 7, 8}, {2, 3, 4}}

• the nodes {6, 7, 8} form a constituent in unified due to the V-place node, but no such 

constituent exists in v-features

• the constituent dominated by the root node, {2, 3, 4, 6, 7, 8}, is present in both sets even though 

the labels of these nodes differ across theories

• by using the transduction rules for translating the definition of the parent function for v-

features into the logic of unified means we can determine the constituents using the same 

node indices
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On notational equivalence



Notational equivalence

At what point can we call two theories notationally equivalent?
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Notational equivalence
A QF transduction is extremely restricted in the degree to which the output 

can differ from the input because QF is a weak logical language limited to 

local operations. QF-bi-interpretability can therefore be considered an 

indication of notational equivalence. (Strother-Garcia 2019: 39)

…we can conclude that separated and bundled representations are bi-

interpretable in a strict model theoretic sense. Within the framework 

adopted here, the models do not differ in any non-trivial way in terms of 

their structure. Condition (1b)3 for notational equivalence is thus satisfied. 

(Oakden 2020: 286)

3“Two models represent the same set of abstract properties, differing only superficially.”
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Notational equivalence
• In their intended grammatical frameworks, the changes in natural class definitions have real and 

tangible effects for both the naturalness (or even possibility) of capturing a process and for the 

predicted typology of languages.

• No card-carrying phonologist before 2010 would call strings and feature bundles notationally 

equivalent—because the expectation then is that the representations would be used in the 

grammatical frameworks they were intended for.

• The appeal of Miller 2001′s approach is that we can now safely and comfortable say that two 

representations or formalisms are equivalent in some domain and potentially not equivalent in 

others

• Specific equivalence under some transduction should be referred to as such, especially after 

determining exactly what similarities in complexity or expressivity must follow from a 

transduction. (Oakden 2020 has excellent discussion on this.)
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Natural class and learnability
• Gildea & Jurafsky 1996 test the OSTIA (onward subsequential transducer inference algorithm, 

Oncina, Garcia & Vidal 1993) against synthetic but naturalistic input-output pairs in an effort 

to learn the English flapping rule t → dx / V́ r* _ V

• Even though the OSTIA algorithm can provably to learn any subsequential function in the limit 

from positive data, it fails to learn the correct pattern from naturalistic data

• The learning task is successful after the implementation of three learning biases Gildea & 

Jurafsky 1996 implement, one of which is the idea that “[p]honologically similar segments 

behave similarly.” (Gildea & Jurafsky 1996: 508)
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Natural class information as a learning aid

Initial attempt with unmodified OSTIA 

algorithm:

• relatively high error rate (did not learn 

the pattern exactly)

• obscene number of states (just look at it)

from Gildea & Jurafsky 1996: 507
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Natural class information as a learning aid

Adding Faithfulness4 bias:

• much lower error rate (0.06% down 

from 4.46%)

• down to 3 states

• cannot generalize: if a particular 

segment was not in the right 

position in the training data, it is 

excluded from the rule context

from Gildea & Jurafsky 1996: 507

4state transitions should have identical inputs and outputs as much as possible
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Natural class information as a learning aid

Adding Community (natural class 

information) bias:

• essentially correct

• generalizes process to all appropriate 

vowels

from Gildea & Jurafsky 1996: 507

“The intuition that OSTIA is missing, then, is the idea that phonological constraints are sensitive to phonological 

features that pick out certain equivalence classes of segments. Since the beginning of generative grammar, and based 

on Jakobson’s early insistence on the importance of binary oppositions (Jakobson 1968; Jakobson, Fant, and Halle 

1952), phonological features, and not the segment, have generally formed the vocabulary over which linguistic rules 

are formed. Giving such knowledge to OSTIA would allow it to hypothesize that if every vowel it has seen 

has acted a certain way, that the rest of them might act similarly.” (Gildea & Jurafsky 1996: 514, emph. mine)
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Natural class information as a learning aid
• For algorithms to learn from more naturalistic data than what is currently required, they (at 

least) must be able to generalize over classes of segments

• The case of Gildea & Jurafsky 1996 is just one example of this; other examples across various 

learning paradigms include:

‣ the algorithm in Gouskova & Gallagher 2020, which crucially assumes that segments 

participating in long-distance interactions form a natural class

‣ the Output Driven Learner of Tesar 2013, which crucially uses feature information to reduce 

the search space of appropriate underlying forms (among for many other things)

‣ for the MaxEnt learner (Hayes & Wilson 2008), “it is the natural classes determined by the 

features, rather than the features themselves, that determine the content of a constraint.” (p. 

391)
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Summary



Summary
• Logical transductions between model-theoretic implementations of phonological 

representations offers a rigorous and precise way to track differences in expressivity between 

theories

• However, even translations defined with weak logic, like quantifier-free first-order logic, allow 

for relevant linguistic differences between the representations, such as predicted natural classes 

or feature class information

• The research program here puts forth a way to marry the purely logical approach of comparing 

representations with one that tracks relevant linguistic properties, without abandoning the 

precision and rigor of finite model theory

• While the exact consqeunces of these linguistic properties, such as natural class preservation, is 

understudied in terms of a representation’s expressive power, it most definitely matters for 

learning over such structures, especially with naturalistic data
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thank you!

and thanks to Adam Jardine, Jeff Heinz, Scott Nelson, and many others who have engaged with 

this work in the past, either as an audience or directly.
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Figure 7: Transduction rules from unified to v-features 57/58



Figure 8: Transduction rules from unified to v-features 58/58
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