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Why formally compare representations?

(non-exhaustive)

1. Compare some input representation to some target/output representation of some process to
learn about the computational nature of that process (e.g. Jardine 2017)

2. Compare some potential lexical representation with a target surface representation to
determine “what type of information needs to be directly stored in long-term memory” (Nelson
2024)

3. Compare proposal A from the literature to proposal B from the literature to determine
differences in predictions/complexity/content/?? (e.g. Strother-Garcia 2019, Oakden 2020,
Jardine, Danis & Iacoponi 2021)
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Meta-theoretical comparisons

Figure 3.2: A visual representation of My,

General enterprise

« Define phonological structures in finite model theory -
(Libkin 2004) 20:0:0
1 2 3 4
« Provide logical transductions, or translations, from one <

theory to another (Courcelle 1994)

For phonologists M ™ (D {Re, Ro, Ry, Ri}:2)
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conclude from transductions defined over fie = A2 (L3, (0, (29, 2.4, 6.0
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representations across theoretical proposals?

2. What can practitioners of such proposals conclude from
the same transductions?

3. Under what circumstances can two representations from Strother-Garcia 2019: 19
be considered notationally equivalent?
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R (3,43
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An analogy

Phalanges

P Humerus | Radius/Ulna Carpals [l Metacarpals |l (fingers)

from https://www.nps.gov/subjects/bats/how-bats-fly.htm
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Framework and preliminaries



Definitions

« T use proposal to mean some phonological theory or model as defined and proposed in the
primary literature, and theory to mean its specific model-theoretic implementation (Libkin
2004, Strother-Garcia 2019)

« A segmental theory or proposal is one that focuses only on the structure of segments’, as
opposed to syllabic, metrical, or other types of possible phonological representations

» linear representational theory here means those theories where there is only a single total
linear ordering relation (or function) defined between segments in a theory (e.g. strings or
feature matrices)

» nonlinear representational theory then are those with more than a single ordering
relation (or function) defined (e.g. autosegmental representations), or one using general
precedence

or segment-like things, as not every proposal intends to actually define what a segment is

6/58



(Some) Segmental Proposals

[ +voc T | —voc ]
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Chomskv & Halle 1968: 336
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Segmental Theories

In addition to their model-theoretic implementation, as a tool to aid in comparing segmental
theories, we assume an atomic segment mapping for each:

Definition 1: Atomic segment mapping.

For each segmental proposal represented as a finite model, we f

also define a bijective mapping from the full range of possible O —p
segmental structures in that theory to atomic symbols (e.g. AN — t
IPA characters that capture the intended linguistic meaning of 0 —— k

said structures).

Note that there is some analytical freedom in how structures are mapped to IPA characters; this
has consequences later.

8/58



Logical Transductions

« Illustrative transduction example from Nelson 2024: 106: a translation between strings (over ¢, d,
n, a) and feature bundles (with [voi], [son], [syl])

« output structure defined in terms of input structure

boos () = d(z) V n(z) V a(z) (4.13) Rule (4.13) can be read: some
et 414 position x is labeled [voi] in the
Peen(z) = (2] V alz) (419 output if it is labeled d, or n, or a

o1 (x) £ a(z) (4.15) in the input

« output structure is then an order of positions, each with multiple labels (unary relations)
representing phonological features
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Logical Transductions

« When the input is a featural representation, there is the following translation back into a string:

¢(z) & —voi(x) A —son(x) A —syl(z) (4.16)
da(r) = voi(z) A —son(z) A —syl(x) (4.17)
dn(x) & voi(x) A son(z) A —syl(z) (4.18)
ha(z) £ voi(x) A son(z) A syl(z) (4.19)

« The two theories are therefore bi-interpretable (formal definition forthcoming)

« Additionally, and crucially, not just structures but any rule/constraint/logical sentence given in

terms of one theory is also translatable into the logic of the other theory; they are equally

expressive
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Interpretation Domains

« Miller 2001 provides a framework for comparing different syntactic formalisms also using model
theory to explicitly define a strong generative capacity for syntax

« The framework of interpretation domains and interpretation functions allows for formal meta-
theoretical comparisons

» “That is, we must be able to specify which are the intended interpretations of a
structural description in a given formalism. For this purpose we introduce the notion of
Interpretation Domain. Interpretation Domains are set up to provide explicit characterizations
of linguistically significant properties of sentences, independently of specific
formalisms.” (Miller 2001: 9, emph. mine)

« Example: one Interpretation Domain is predicted constituent structure of a natural language
sentence. Formalism A is a phrase structure tree, formalism B is a dependency parse. An
Interpretation Function is defined that takes this formalism and outputs a set-theoretic
representation of the constituency structure of each; these can now be compared directly.
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Three Interpretation Domains for Phonology

Contrast Preservation Natural Class Preservation Feature Class Preservation
Do the theories predict the same Do the theories predict the same Do the theories predict the same
set of phonological contrasts? sets of natural classes? groups of features behave
similarly?

« Each interpretation domain codifies some intended linguistic property of some potential theory

+ Some interpretation domains might not be relevant for a specific comparison—this is expected
and exactly why they must be defined and enumerated

« Each domain relates to logical transductions in different ways; some as a consequence, others as
seemingly orthogonal

+ (Non-)equivalence across these domains must be considered when claiming notational
equivalence across theories
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What do transductions tell us?



Contrast Preservation

« Discussed in detail in Oakden 2020: contrast preservation is when “no contrasts present in one
model are lost in the process of translation into the other” (Oakden 2020: 263)

« The definition of bi-interpretable used in Oakden is stronger than that used in previous work
(e.g. Strother-Garcia 2019), so a transduction that meets this criteria will be called here strongly
bi-interpretable.

Definition 2: Strongly bi-interpretable.

Given two theories T} and T}, an interpretation F' from 7T} to T, and G from T, to 17, the
theories T} and T, are strongly bi-interpretable iff the mapping of F' o G “produces the same
mapping as (i.e. is isomorphic to) the identity map that maps every bundled structure to itself”,
and likewise for G o F' (Oakden 2020: 281).
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Oakden 2020

tone | Yip (1989) Bao (1990) tone | Yip (1989) | Bao (1990)
o (o3
low z‘7 "T high T "‘F
level u N rising u N
| -u < N +u ¢
L 1 | MH 1 h N
1 1 h
o o
high z‘7 "T low T |
i T
level u N falling u A
| +u ¢ VAN -u ¢
H h | ML h 1 AN
h h 1
o o o
mid 1‘7 1‘7 | | low 1‘7 |
) T T . T
level 4 or 4u PN rising u AN
| | -u ¢ +u ¢ AN -u ¢
M h 1 | | LM 1 h N\
h 1 1 h
o
high 1‘7 ’1\"
falling u N
N\ +u ¢
HM h 1 N\
h 1

Table I

Level and contour tonal contrasts in Yip (1989) and Bao (1990).
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Contrast Preservation

While Oakden 2020 uses contrast preserving to mean exactly those translations that are strongly
bi-interpretable, the definition of contrast preservation offered here is one that is not dependent
on the existence of a defined transduction.

Definition 3: Contrast Preservation (transduction neutral).

If f is the atomic segment mapping for some theory 7; and f gt

g is the atomic segment mapping for some theory 7, then @) ” P > o
T, and Ty, are contrast preserving iff f o g1 is a bijection A >t > 0
(where g~ ! is the inverse mapping, i.e. from atomic symbols O > k =

to structures)
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Contrast Preservation

Theorem 1: Contrast preservation follows from strong bi-interpretability.

If two segmental theories 7 and T}, are strongly bi-interpretable, then there exist atomic
segment mappings for 7} and 7, that are contrast preserving.

Proof: If F'is a translation from T} — T, and G vice versa, then by definition if 7} and T;, are
strongly bi-interpretable, ' o G and G o F' are isomorphic to the identity map. The identity map is
a bijection, so ' o G and G o F are bijective. If F' o G is bijective, then F' and G are each bijective.
Map every structure M in T} to some arbitrary unique symbol; this is its atomic segment mapping
f. Associate that same symbol to F'(M); this is the atomic segment mapping g for T,,. f o g *

must then itself be bijective and therefore 7} and T, are contrast preserving, by definition.
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Contrast Preservation

Splitting the definition of contrast preservation from that of (strong) bi-interpretability allows us
to ask:

Can there be a situation where 7} and 7, are contrast preserving (as defined here), but are not
strongly bi-interpretable under MSO?

+ In a purely mathematical sense, probably?: two theories with the equal cardinality of structures
are contrast preserving in a trivial sense
« In the extension of those representations ever proposed for phonology, probably not?
» Nelson 2022 provides translations for strings and representations in articulatory phonology,
which are fairly far apart on the representational spectrum
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Contrast non-preservation and pattern complexity

Inspired by conference website, consider the contour segment (77) vs. cluster (7}) analyses of
affricates such that some true affricate ts is in the atomic segment mapping codomain of 77 but
not 75,

T 1,

ta ta T, has a contrast between clusters and true

affricates, while 7}, does not, thus the two are
not contrast preserving and further are not
strongly bi-interpretable.

sa <« sa
tsa tsa

tsa

Spaces added between atomic elements for clarity.
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functions

T T, T T,
ta — ta ta «<— ta
sa ——— Ssa sa <« Ssa
tsa tsa tsa «— tsa
tsa tsa

surjection (but not injection): every element in injection (but not surjection): no two elements
the codomain (75) is mapped to from some in the domain (75,) map to the same element in
element in the domain (7}) the codomain (77)

a bijection is both an injection and a surjection
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Contrast non-preservation and pattern complexity

Theorem 2: Strongly bi-interpretable linear theories preserve complexity classes(?).

If a pattern is of certain complexity class C;,, when modeled under some linear representational
theory 77, and T is strongly bi-interpretable with 7, then the pattern modeled under T, is of
the complexity class C;, where potentially j = k*

« Sketch of proof: this is essentially defining an isomorphism for formal languages of strings
between two alphabets ¥ and 3’; such an operation there preserves the complexity class.
Assuming only linear represtational theories means there is never a situation where a non-local
process becomes local (or vice versa).

« Non-linear representations can definitely lower the complexity of a pattern: Jardine 2016:
certain tonal patterns are non-local when computed over string representations, but local when
computed over autosegmental representations.

*The k of the necessary constraint might change based on the exact configuration of the structure, but with finite
models in a linear theory the k remains bounded.
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What transductions don’t tell us



Natural Class Preservation

In view of this, if a theory of language failed to provide a mechanism for
making distinctions between more or less natural classes of segments, this
failure would be sufficient reason for rejecting the theory as being incapable
of attaining the level of explanatory adequacy. (Chomsky & Halle 1968: 335)

In Logical Phonology [...], rules refer to natural classes by definition: a
statement that cannot be formulated in terms of natural classes is not a rule.
(Volenec & Reiss 2020: 28)

« Two theories are natural class preserving if they predict the same sets of natural classes
across their possible structures.

« In the respective grammatical systems for most proposed representations, the possible natural
classes directly influence the rules or constraints over that structure.
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Natural Class Preservation

+ Given some theory 7', a natural class in that theory are all the segmental structures sharing
some piece of connected substructure.

« For example, in a theory where a node can have the label [+labial], then the natural class for
[+labial] is the set of all segmental structures containing a node labeled [+labial] and none that
do not.

« Because this is a set of structures, it cannot be compared directly against some other theory that
builds structure differently:

+lab +lab
+voi —voi
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Natural Class Extensions

If N is a natural class of structures in 7" as defined above, and f is the atomic segment mapping
for T, then the natural class extension of N is the set £ = {f(z) : x € N}

Tl

N. +lab E +lab

+lab +lab
+voi —voi
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Natural Class Extensions

Definition 4: Natural Class Preservation.

Two theories T} and 75, are natural class preserving iff the set of all natural class extensions of
T) exactly equals the set of all natural class extensions of 75,
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Two theories: upniﬁed and v-features

Figure 1: unified theory uses same unary labels Figure 2: v-features theory uses unique labels
for features distinguishing consonants and for features distinguishing vowels, no separate
vowels, but includes V-place node V-place node
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Two theories: unified and v-features

unified v-features

/v/ C1

Figure 3: Output of transduction from unified to v-features 28/58



Two theories: unified and v-features

v-features unified

/p/ C1 2

P

Figure 4: Outout of transduction from v-features to unified 29/58



Two theories: unified and v-features

- unified and v-features are contrast preserving
» each with 6 fully-specified binary features

« unified and v-features are strongly QF-bi-interpretable
» full transduction rules in appendix

« yet unified and v-features are not natural class preserving
» unified contains a natural class for each value of each place feature whose natural class
extensions are not part of the natural class extensions of v-features (this is intentional and
expected, see Danis 2025 for further discussion)

« do we want to call them notationally equivalent?
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Feature Class Preservation

The enterprise of feature geometry involves a cross-linguistic investigation of which features
seem to behave/change together in some process, and working this into the representations
themselves, e.g. if all all place features tend to assimilate together, then there must be some
constituent in the segmental structure that includes all place features. (Clements 1985, Sagey 1986,
Mester 1986, McCarthy 1988, among many others)

« If two theories group the same (or related) features into the same constituency structure, they
are feature class preserving.

« Problem: constituents of features cannot be compared directly if their labels (names) do not

match (e.g. [labial] vs [round]).

« Solution: Utilize the logical transduction to compare constituency in terms of relevant node
indices such that constituents in both theories can be compared directly in a set theoretic way.
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Feature Class Preservation

Figure 5: unified Figure 6: v-features

the sets of terminal nodes cannot be compared directly as their labels differ
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Feature Class Preservation

The property of feature class preservation is defined as an MSO sentence over one theory while
defining relations for the other theory based on the rules of the transduction.

1. define a relation D that captures the domination relation for the model in theory A in the logic
of theory A

2Dy = ¢(z,y)
2. use the transduction to define D’ in the logic of B but still evaluated over model A
zD"y = ¢'(,y)

3. define two MSO sentences defining constituency, one using R and one using R’, and compare
the resulting sets
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Feature Class Preservation
Defining Constituency

« define R and R’ as the transitive closure of D and D’ (which is in general MSO definable) to get
the general dominance relation
« assume the following helper predicate:

terminal(xz) = —3y[zDy]
« the definition of constituent in theory A:
Constit, (X) = JyVz[X(x) <> yRzx A terminal(x)]

a constituent is the set of positions X for some node y such that position x is contained in X iff y
generally dominates x and x is a terminal node
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Constituents in unified

xDy := parent(y) =z Az #y

Constit,meq(X) == FyVz[X(z) +» yRx A terminal(z)]
for unified,
R ={(0,1),(0,2),(0,3),(0,4),
(0,5),(0,6),(0,7), (0,
(5,6),(5,7),(5,8),
(1,2),(1,3), (1,4)}

so the following sets satisty Constit,,ixeq(X):
{2,3,4,6,7,8},{2,3,4},{6,7,8}
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Constituents in v-features

Define D’
Current definition for D: z Dy := parent(y) =z Az £ y

Relevant transduction rules:

arent(z!) := (parent(x))! < — vowelFeature(parent(z))
P " | (parent(parent(z)))! < vowelFeature(parent(z))

vowelFeature = +round(z) V +front(z) V +back(z) V —round(x) V —front(z) V —back(z)
The function is defined with cases; these become conjuncts:

D’y := (parent(y))! = x +» — vowelFeature(parent(y)) A
(parent(parent(y)) = = <> vowelFeature(parent(y)) A

T FY
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Feature Class Preservation

xD’y := (parent(y))! = x +» — vowelFeature(parent(y)) A
(parent(parent(y)) = = <> vowelFeature(parent(y)) A

TFy

for v-features but defined over unified,
R"={(0,1),(0,2),(0,3),(0,4),
(0,6),(0,7),(0,8),
(1,2),(1,3), (1, 4)}

so the following sets satisfy Constit, ;.. (X):
{2,3,4,6,7,8},{2,3,4}

unified
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Feature Class Preservation
constituents of unified = {{2, 3,4,6,7,8},{2,3,4},{6,7,8}}
constituents of v-features = {{2,3,4,6,7,8},{2,3,4}}

« the nodes {6, 7,8} form a constituent in unified due to the V-place node, but no such
constituent exists in v-features

« the constituent dominated by the root node, {2, 3,4, 6, 7, 8}, is present in both sets even though
the labels of these nodes differ across theories

« by using the transduction rules for translating the definition of the parent function for v-
features into the logic of unified means we can determine the constituents using the same
node indices
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On notational equivalence



Notational equivalence

At what point can we call two theories notationally equivalent?
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Notational equivalence

A QF transduction is extremely restricted in the degree to which the output
can differ from the input because QF is a weak logical language limited to
local operations. QF-bi-interpretability can therefore be considered an
indication of notational equivalence. (Strother-Garcia 2019: 39)

...we can conclude that separated and bundled representations are bi-
interpretable in a strict model theoretic sense. Within the framework
adopted here, the models do not differ in any non-trivial way in terms of
their structure. Condition (1b)* for notational equivalence is thus satisfied.
(Oakden 2020: 286)

*“Two models represent the same set of abstract properties, differing only superficially.”

41/58



Notational equivalence

« In their intended grammatical frameworks, the changes in natural class definitions have real and
tangible effects for both the naturalness (or even possibility) of capturing a process and for the
predicted typology of languages.

« No card-carrying phonologist before 2010 would call strings and feature bundles notationally
equivalent—because the expectation then is that the representations would be used in the
grammatical frameworks they were intended for.

« The appeal of Miller 2001’s approach is that we can now safely and comfortable say that two
representations or formalisms are equivalent in some domain and potentially not equivalent in
others

« Specific equivalence under some transduction should be referred to as such, especially after
determining exactly what similarities in complexity or expressivity must follow from a
transduction. (Oakden 2020 has excellent discussion on this.)

42/58



Natural class and learnability

+ Gildea & Jurafsky 1996 test the OSTIA (onward subsequential transducer inference algorithm,
Oncina, Garcia & Vidal 1993) against synthetic but naturalistic input-output pairs in an effort
to learn the English flapping rule t — dx / V r* _V

« Even though the OSTIA algorithm can provably to learn any subsequential function in the limit
from positive data, it fails to learn the correct pattern from naturalistic data

« The learning task is successful after the implementation of three learning biases Gildea &
Jurafsky 1996 implement, one of which is the idea that “[p]honologically similar segments
behave similarly” (Gildea & Jurafsky 1996: 508)
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Natural class information as a learning aid

Initial attempt with unmodified OSTIA

algorithm:

« relatively high error rate (did not learn , TR _
the pattern exactly) ‘ A ,\“‘w“" W X

WAL

TR

) A\a-‘ @

A
VIS
SN
Figure 7

First attempt of OSTIA to learn flapping. Transducer induced on 25,000 samples.

« obscene number of states (just look at it)

e

RO\
/\\VN\.W\)
@#(\A

from Gildea & Jurafsky 1996: 507
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Natural class information as a learning aid

V + { 0oy2, aw2, uh2 }

Adding Faithfulness* bias:

« much lower error rate (0.06% down
from 4.46%)

« down to 3 states

-

C, V- {uh2, uhl, ayl,
erl, er2, oyl }

— 1

V- {oy2,aw2, un2 }

« cannot generalize: if a particular
segment was not in the right
position in the training data, it is
excluded from the rule context Figure 12

Flapping transducer induced with alignment, trained on 25,000 samples.

from Gildea & Jurafsky 1996: 507

*state transitions should have identical inputs and outputs as much as possible
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Natural class information as a learning aid

Adding Community (natural class

information) bias:
« essentially correct

« generalizes process to all appropriate

vowels Figure 14
Flapping transducer induced from 50,000 samples.

from Gildea & Jurafsky 1996: 507

“The intuition that OSTIA is missing, then, is the idea that phonological constraints are sensitive to phonological
features that pick out certain equivalence classes of segments. Since the beginning of generative grammar, and based
on Jakobson’s early insistence on the importance of binary oppositions (Jakobson 1968; Jakobson, Fant, and Halle
1952), phonological features, and not the segment, have generally formed the vocabulary over which linguistic rules
are formed. Giving such knowledge to OSTIA would allow it to hypothesize that if every vowel it has seen
has acted a certain way, that the rest of them might act similarly.” (Gildea & Jurafsky 1996: 514, emph. mine)
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Natural class information as a learning aid

« For algorithms to learn from more naturalistic data than what is currently required, they (at
least) must be able to generalize over classes of segments

« The case of Gildea & Jurafsky 1996 is just one example of this; other examples across various

learning paradigms include:

» the algorithm in Gouskova & Gallagher 2020, which crucially assumes that segments
participating in long-distance interactions form a natural class

» the Output Driven Learner of Tesar 2013, which crucially uses feature information to reduce
the search space of appropriate underlying forms (among for many other things)

» for the MaxEnt learner (Hayes & Wilson 2008), “it is the natural classes determined by the
features, rather than the features themselves, that determine the content of a constraint.” (p.
391)
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Summary



Summary

+ Logical transductions between model-theoretic implementations of phonological
representations offers a rigorous and precise way to track differences in expressivity between
theories

« However, even translations defined with weak logic, like quantifier-free first-order logic, allow
for relevant linguistic differences between the representations, such as predicted natural classes
or feature class information

+ The research program here puts forth a way to marry the purely logical approach of comparing
representations with one that tracks relevant linguistic properties, without abandoning the
precision and rigor of finite model theory

« While the exact consqeunces of these linguistic properties, such as natural class preservation, is
understudied in terms of a representation’s expressive power, it most definitely matters for
learning over such structures, especially with naturalistic data
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thank you!

and thanks to Adam Jardine, Jeff Heinz, Scott Nelson, and many others who have engaged with
this work in the past, either as an audience or directly.
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Appendix



1

rt(z) = rt(z) (M
Place(z!) := C-place(z) 2)
+1ab(2!) := +1ab(x) A C-place(parent(x)) 3)
+cor(x') := +cor(x) A C-place(parent(x)) 4
+dors(z') := +dors(x) A C-place(parent(x)) 5)
—lab(z!) := —lab(x) A C-place(parent(x)) (6)
—cor(z') := —cor(x) A C-place(parent(x)) (@]
—dors(z') := —dors(x) A C-place(parent(x)) 8)

+round(r!) := +1ab(x) A V-place(parent(x)) 9
+front(x!) := +cor(x) A V-place(parent(x)) (10)
+back(z') := +dors(x) A V-place(parent(z)) (11)
—round(r!) := —lab(x) A V-place(parent(x)) (12)
—front(x!) ;= —cor(x) A V-place(parent(x)) (13)
—back(x') := —dors(x) A V-place(parent(z)) (14)
parent(x') := (parent(z))" < —V-place(parent(z)) (15)
parent(x") := (parent(parent(z)))' < V-place(parent(x)) (16)

Figure 7: Transduction rules from unified to v-features 57/58



1

rt(z’) := rt(z)
+1ab(z') := +round(z) V +1ab(x)
+cor(z!) := +front(z) V +cor(x)
+dors(a') := +back(z) V +dors(x)
—lab(z') := —round(z) V —lab(z)
—cor(z!) ;= —front(z) V —cor(x)
—dors(z') ;= —back(r) V —dors(z)
C-place(z') := Place(x)
V-place(z?) := rt(z)
parent(z') := (parent(z))' < —vowelFeature(x)
parent(x') := (parent(x))* < vowelFeature(z)
parent(z?) := z' < rt(x)

Figure 8: Transduction rules from unified to v-features

(17)
(18)
(19)
(20)
21
(22)
(23)
(24)
(25)
(26)
(27)
(28)
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